Unit Witt vectors

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Witt vectors

Caution: These polynomials are referred to as w0, w1, w2, ... in Sections 5-8 of [1]. However, beginning with Section 9 of [1], Hazewinkel uses the notations w1, w2, w3, ... for some different polynomials (the so-called big Witt polynomials, defined by formula (9.25) in [1]), which are not the same as our polynomials w1, w2, w3, ... (though they are related to them: in fact, the polynomial wk t...

متن کامل

Overconvergent Witt Vectors

Let A be a finitely generated algebra over a field K of characteristic p > 0. We introduce a subring W †(A) ⊂ W (A), which we call the ring of overconvergent Witt vectors and prove its basic properties. In a subsequent paper we use the results to define an overconvergent de Rham-Witt complex for smooth varieties over K whose hypercohomology is the rigid cohomology.

متن کامل

Witt vectors . Part 1

In this note, we will generalize most of the results in [4], replacing the Witt polynomials wn by the more general polynomials wF,n defined for any pseudo-monotonous map F : P × N → N (the meaning of ”pseudo-monotonous” will soon be explained below). Whenever possible, the proofs will be done by simply copypasting the corresponding proofs from [4] and doing the necessary changes which often wil...

متن کامل

The Theory of Witt Vectors

1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Definition of the Witt Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3. Proof of the Existence of the Witt Rings . . . . . . . . ....

متن کامل

Lie powers and Witt vectors

In the study of Lie powers of a module V in prime characteristic p, a basic role is played by certain modules Bn introduced by Bryant and Schocker. The isomorphism types of the Bn are not fully understood, but these modules fall into infinite families {Bk,Bpk,Bp2k, . . .}, one family B(k) for each positive integer k not divisible by p, and there is a recursive formula for the modules within B(k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1962

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1962-0136605-1